Tag Archives: Android

A week of pkgsrc #12

To fill in the gap since the last post, I thought I’d get the notes which had been collecting up, posted here. pkgsrc got a mention in the Quarterly FreeBSD status report. My bulkbuild effort started on FreeBSD/amd64 10.1-RELEASE but thanks to my friend James O’Gorman, I was able to expand to FreeBSD 11-CURRENT and recently switched over from 10.1-RELEASE to 10.2-RELEASE.
I got the idea to try to pkgsrc on Android after someone posted a screenshot of their Nexus 7 tablet with the bootstrap process completed.

There are several projects on the google play store for running the user land built from a Linux/arm distro in a chroot on Android.
The first project I tried was Debian noroot (based on the tweet that inspired me), it spawned a full X11 desktop to run & so the process was painfully slow.

Switching to GNUroot Debian which just ran a shell in the chroot was much faster at extracting the pkgsrc archive though bootstrap still took long. The best result was with Linux deploy using an Arch Linux user land, everything was very snappy.

On Mac OS X Tiger PowerPC, GCC 5 appears to no longer require switching off multilib support when building on a 32-bit PowerPC CPU, my hardware has changed but the CPU is still a G4. The same changes to force dwarf2 and removing the space in-between flags and paths fed to the linker were otherwise required, as with previous versions of GCC.

I spent a little time with OmniOS and “addressed” the outstanding issues which prevented it from working out of the box. shells/standalone-tcsh was excluded on OmniOS which prevented the version of tcsh shipped with the OS from being clobbered during bulkbuilds. The other issue was what appeared to be a problem with gettext but turned to be an issue with the compiler shipped with OmniOS. This became a topic of discussion on what the correct solution to the problem is. The GCC provided with OmniOS is built with Fortran support and includes the OpenMP libraries (I’m guessing this is the reason for the libraries) in its private lib directory inside /opt/gcc-4.8.1/lib, it turns out that gettext will make use of OpenMP libraries if it detects them during configure stage which I’ve not been able to find a concrete answer for why, the GCC documentation don’t say more than a paragraph about the OpenMP libraries themselves (libgomp) either. The problem was that GCC was exposing its private library in the link path but not in the run path, this meant you could produce binaries which would compile fine but would not run without having to play around with the runtime linker. In my case I’d previously added the private library locate to the runtime linkers search path as a workaround, I disabled the OpenMP support in devel/gettext-tools and that’s where the discussion began. Basically, it’s not possible to expose the private library location to the linker because that would cause issues with upgrades. The location should not be exposed by the compiler in the first place (I guess this was for the convenience of building the actual release of OS?). Richard Palo pursued the issue further and I’m informed that future releases of OmniOS will move libgomp out from this private location to /usr/lib so that it’s in the default library search path.

With the introduction of the GPLv3 license, GNU projects have been switching to the new license. This causes problems for projects outside the GNU eco-system which utilise them if the terms of the new license are unacceptable for them. Each project has dealt with it differently, for OpenBSD they maintain the last version which was available under GPLv2 & extend the functionality it provides. Bitrig has inherited some of this through the fork. Through the bulkbuilds it was revealed that the upstream version of binutils has no support for OpenBSD/amd64 or Bitrig at all. Adding rudimentary support was easily achieved by lifting some of the changes from the OpenBSD CVS repo. While at present I’m running bulkbuilds against a patched devel/binutils which I’ve not upstreamed or committed for both OpenBSD & Bitrig, I am thinking that for OpenBSD we should actually just use the native version and not attempt to build the package. For Bitrig, there is already a separate package in their ports tree for a newer version of binutils, it’s pulled in alongside other modern versions of tools under the meta/bitrig-syscomp package so it makes sense to mimic that behaviour.

Coming to the realisation that stock freedesktop components were not going to build on OpenBSD, I switched to using X11_TYPE=native to utilise what’s provided by Xenocara. Despite the switch, pkgsrc still attempted to ignore the native version of MesaLib and try to build its own, the build would fail and prevent a couple of thousand packages from building.
This turned out to be because of a test to detect the presence of X11 in mk/defaults/mk.conf, it was testing for the presence of an old path which no longer exists. As this test would fail, the native components would be ignored & pkgsrc components would be preferred. The tests for OpenBSD & Bitrig were removed & now default to a default of an empty PREFER_PKGSRC variable. The remaining platforms need to be switched over after testing now.

As Mac OS X on PowerPC gets older and older with time, the requirement for defining MACOSX_DEPLOYMENT_TARGET grows ever more redundant, Ruby now ships with it & unless it’s defined, you will find that it’s not possible to build the ruby interpreter any more. I am considering setting MACOSX_DEPLOYMENT_TARGET="10.4" for PowerPC systems running Tiger or Leopard so that packages could be shared between the two but have not had a chance to test on Leopard yet to commit it. I somehow ended up on a reply list for a ticket in the Perl RT for dealing with this exact issue there. They opted to cater for both legacy & modern version of OS X by setting the necessary variables where necessary.

Getting through backlogged notes to be continued

Serial terminal on Nexus 7 with keyboard

Back in September last year at Wuthering Bytes, during a discussion about programming I thought I’d look into the availability of development tools on the android platform & was pleasantly surprised to find tool chains & IDE’s, not having a keyboard made even a simple hello world application painful to write though so I left it at that with the intention of buying a keyboard. I finally got around to buying a keyboard for my 2012 model, settling for a mobile bluetooth keyboard for nexus 7, first impression is the keys feel a little on the small size on but will see after a bit more use.

20140113-034347.jpg
I’m happy with the size & form factor, it reminds me of the Windows CE HP Journada PDA which are supported by NetBSD/hpcsh though the Journada’s were smaller.

As I have a OTG cable which allows me to connect USB devices to the nexus 7 which normally wouldn’t work (due to requiring host mode) I looked into the state of serial adapter support.

Prolific who produce a very popular USB to Serial chip (PL2303) have an app for Android, as I didn’t have a null modem cable at hand I couldn’t test functionality beyond seeing if the adapter is detected.

20140113-034541.jpg
For serial console on my Rasberry Pi’s I use a SiLabs CP2102 chipset USB to TTL & a FTDI FT232PL chipset adapter for BeagleBone Black. To connect both of these adapters to my Nexus 7 I used USB Serial Lite. At first the app seemed very unstable, becoming unresponsive after the first attempt to send something over the serial port, this turned out to be CR / LF not being enabled to send on transmit, having at least one of them above the text entry box on the TX row & ticked solves this issue.
There are many more apps available in the Play store for connecting to USB serial adapters but I couldn’t get any of them to produce output from the CP2012.
20140113-034718.jpg
20140113-034732.jpg